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Abstract. Urban safety is a critical concern for town planners, architects, and the gen-

eral public, particularly in metropolitan areas like London. This study investigates the 

relationship between crime data in London and street view images (SVI) using ad-

vanced image segmentation regression models. By analyzing crime incidents alongside 

visual data, the research aims to provide accurate predictions of crime rates and identify 

key contributing factors. The project employs machine learning techniques, precisely 

Random Forest and XGBoost, to visualize actual versus predicted crime distributions, 

enhancing our understanding of urban safety dynamics. Additionally, the study ex-

plores innovative solutions for optimizing street scenes through reinforcement learning, 

allowing for adaptive urban planning strategies. An interactive online platform is de-

veloped, enabling users to modify street view components easily. This platform lever-

ages Stable Diffusion to generate responsive urban scenarios, fostering community en-

gagement and informed decision-making. By integrating geospatial analysis with visual 

data, this research contributes to the field of urban safety and offers practical tools for 

enhancing the livability and security of urban environments. Ultimately, the findings 

aim to inform policy decisions and improve the overall quality of life in urban settings. 
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1 Background 

London is often perceived on social media as a high-crime city, with urban crime data 

reaching 75,000 incidents in August 2024 alone, exhibiting significant geographical 

spatial clustering characteristics, particularly with crime rates around Oxford Street be-

ing substantially higher than in other urban areas. Existing research based on Space 

Syntax theory has already confirmed that urban spatial configuration has a complex 

structural impact on crime occurrence, with urban space integration and connectivity 

demonstrating a non-linear, multidimensional correlation with crime rates. This study 

focuses on the proportional distribution of different segmentation elements in street 

scenes (such as buildings, streets, greenery, etc.), and through quantitative analysis of 
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the relationship between street scene element composition and crime rates, explores the 

potential influencing mechanisms of urban spatial micro-morphology on crime occur-

rence. 

2 Precedents 

2.1 Crime Rate related urban study 

Many researchers have already provided insights into the complex quantitative rela-

tionship between street scenes and crime rates. In 1982, Wilson and Kelling proposed 

the Broken Window Theory (BWT), with the advantage of explaining the impact of 

physical environment on crime, but the limitation of failing to deeply analyze specific 

mechanisms. In 2005, Cozens et al. proposed Crime Prevention Through Environmen-

tal Design (CPTED), with the advantage of emphasizing crime prevention through ra-

tional physical environment design, but the limitation of not considering the complexity 

of socioeconomic factors.(Cozens, P.M., Saville, G. and Hillier, D., 2005. )Patino et al. 

in 2014 attempted to quantify environment using remote sensing images, with ad-

vantages of obtaining large-scale data, but limitations of only capturing sky view and 

inability to reflect human-eye street landscape perspectives.(Garcia, J.J., Velasquez, H. 

and Mauricio Montenegro, C., 2014.) He et al. in 2020 tried using geotagged social 

media data, with advantages of obtaining real-time data, but limitations of uneven data 

distribution and difficulty in precisely characterizing street environments.(He, L., Páez, 

A., Jiao, J., An, P., Lu, C., Mao, W. and Long, D., 2020.) Hipp et al. in 2021 described 

physical environment from four dimensions (vibrancy, auto-oriented, defensible space, 

and greenspace), with advantages of multi-dimensional analysis but limitations of fea-

ture selection relying on expert subjective judgments.(Hipp, J. R., Lee, S., Ki, D., and 

Kim, J. H. 2021). Deng et al. in 2022 used eight street view variables to describe street 

environment, with advantages of using street view images but limitations of focusing 

on single environmental elements and not considering overall environmental percep-

tion. (Deng, M., Yang, W., Chen, C. and Liu, C., 2022. ) 

2.2 Regression Models 

Conventional crime rate prediction with street view images (SVI) often lies on Siamese 

Convolutional Neural Networks. Yet, due to their complex structure, CNN models are 

often regarded as "black boxes," making it difficult to explain their decision-making 

processes, leading to a problem in applications that require transparency and interpret-

ability, such as in law and social sciences (Birck, 2017; Kadiyam, 2021). Compara-

tively, other regression models like Extreme Gradient Boosting (XGboost) and Random 

Forest are able to be backtraced, providing feature importance scores to help understand 

the basis of the model's decisions. Precedent study of carbon emission predictions with 
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SVI using Random Forest has also been proved with high credibility, attaining an R-

squared value ss> 0.8 (Shi et al., 2024). This leads to our exploration on light-weighted 

regression model with SVI inputs, aiming to receive both predictions and impacts of 

predictors concurrently. 

2.3 Reinforcement Learning 

Reinforcement learning is one of the state-of-art artificial intelligence learning model 

which approaching the optimal result with a trial-and-error mechanism. Basic rein-

forcement model contains two parts: actor and critic (Masadeh, Wang and Kamal, 

2000). In the recent year, reinforcement learning has been deployed in to the urban 

scale ,tackling with complex real world problems. In the study conducted in 2024, re-

searchers use RL model to find cyclist’s visual preference with street view and bike 

trajectories. (Ren et al., 2024). While this research provides valuable insights for city 

planning, it lacks practical solutions. Building on this work, our study aims to assess 

the SVI (Street View Index) and propose corresponding solutions. 

3 Methodology 

3.1 Study area 

This study focuses on the city of London, the capital of the United Kingdom. London 

is a sprawling metropolis with an area of 1,572 km² and a population of over 9 million 

as of 2024. The city features a diverse range of neighborhoods and physical environ-

ments, providing a valuable opportunity to explore how variations in these settings in-

fluence crime dynamics. We gathered crime data collected from the Metropolitan Po-

lice Service and images collected from Google Street View (GSV), which were ana-

lyzed and aggregated to street segments. 

3.2 Crime data  

Crime data: The crime data for this study was collected from the UK Police website 

(https://www.police.uk/) for the period from August 1, 2024, to August 31, 2024.  There 

are 75369 crime incidents in total happened in London which provide a comprehensive 

overview of crime pattern, mainly happened in the central London. 

To focus on our analysis, we target on the central area with highest crime count as our 

study sample which contains 30795 cases. It allows us for a detailed examination of 

crime dynamics. (see Fig.3A) 
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Fig. 3A. A figure shows the crime distribution in London in Aug 2024. 

Collecting GSV Image: To analyze the data, we calculate the crime count in street 

segments. For reliability in accessing the feature of the segment, we avoid to include 

images from points located near intersections, given that these capture the environment 

of more than a single segment. (Zhang et al., 2018) Instead, we chose the middle point 

of the street to collect the street view imagery. At each point, we pulled four images 

using Google Street View (GSV) API that were oriented at 0 degrees, 90 degrees, 180 

degrees and 270 degrees. In total, we collected 57476 images from the points (see Fig 

3B) 
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Fig. 3B. A figure shows the crime distribution in street segments and the points for collecting 

street view imagery. 

Image processing: To maximize the visual information from the street view, we com-

bine the four street view images captured at 0, 90, 180 and 270 degrees into one pano-

ramic image. (see Fig.3C) This approach enhance the contextual understanding of each 

street segments for further analysis.  

 

Fig. 3C. An example of combining four GSV into one panorama. 
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3.3 Streetview data 

To extract detailed segmented components from each input panorama, a pre-trained 

psp_res50_ade model was utilized for semantic image segmentation. This model em-

ploys a ResNet-50 backbone, a 50-layer residual network integrated with the Pyramid 

Scene Parsing (PSP) module. The model was trained on the ADE20K dataset, a large-

scale dataset containing 25,574 images for training and 2,000 images for valida-

tion(Zhang et al., 2018)(see Fig.3D). ADE20K provides comprehensive annotations of 

objects and their parts, with 150 distinct classes for scene parsing tasks, represented 

using color-coded labels. 

 

Fig.3D. A breakdown of the psp_resnet50_ade model.  

For this study, 7,053 street mid-point panoramas within the selected area were pro-

cessed using this model in Python. Each Street View Image (SVI) was segmented, pro-

ducing color-coded output images in PNG format. The color-coded outputs were ana-

lyzed at the pixel level to determine the presence and distribution of various compo-

nents. Specifically, the RGB values of each pixel were matched against the pre-trained 

labels to generate a normalized dataset of component distributions for all SVIs. 

This component distribution dataset was further augmented with corresponding street 

segment lengths and total crime counts, ensuring comprehensive data preparation for 

subsequent regression model training and testing (see Fig.3E.). This approach enabled 

precise mapping of street-level visual features to quantitative crime metrics, facilitating 

more profound insights into the relationship between urban design elements and crime 

patterns. 
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Fig.3E. Data processing flowchart, gathering occurrence of components, length of street seg-

ment, and crime counts for regression. 

3.4 Regression 

Pre-processing of Crime Count Data. Computation of Crime Rate by Length: The 

crime rate was computed by dividing the crime count by the length of street segments 

and then multiplying by 100.  

This normalization adjusted for variations in street segment lengths:  

 

Data Transformation: The crime rate was capped at the 95th percentile (≤ 50) to ad-

dress the presence of extreme values (outliers). 

A logarithmic transformation was applied to normalize the distribution of crime rates:  
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This approach avoided issues with zero values and created a more symmetrical distri-

bution for regression analysis. 

  

Fig.3F. Data processing flowchart, gathering occurrence of components, length of street seg-

ment, and crime count for regression. 

Regression Model Performance Comparison. Three regression models were com-

pared: 

Linear Regression: Straightforward regression was used to predict log_crime_rate 

based on the identified SVI (Street View Image) components and length. 

Results: Multiple R-squared:  0.348, Adjusted R-squared:  0.3432 

  

The model was rejected due to its low R-squared value, weak performance for middle 

and high crime rates, biased trend on scatter plots, and excessive number of predictors 

for the optimal model (52/143 validated inputs). 

Random Forest: Out-of-bag (OOB) error estimates were utilized to optimize the num-

ber of trees in the forest. Results: % Var explained: 44.32, R-squared: 0.4512911 
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The model demonstrated better performance for middle-range crime rates and was 

deemed suitable for further predictions. 

XGBoost: XGBoost was implemented, with optimization for higher tree depths (200-

300). Results: R-squared: 0.4505854 

  

This model performed well, particularly for higher crime rate predictions. 

 Fine-tuning Random Forest Model 

Model Tuning: The following parameters were optimized: ntree (number of trees): A 

value of 300 was selected, where the OOB error reached a minimum, (see Fig.3G). 
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Fig.3G. Out-of-bag (OOB) Error changes with the increase of ntree 

mtry (number of variables randomly sampled as candidates at each split): Values be-

tween 1 and 50 were tested, with 50 determined as optimal. 

Model Training and Validation: The dataset was segmented into 80% for training and 

20% for testing. The fine-tuned Random Forest model was applied to predict 

log_crime_rate. 

Feature Importance: The contribution of features (length and SVI components) to the 

model was visualized using node purity metrics. The top contributing predictors were 

identified for future insights and training practices (see Fig.3H.). 
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Fig.3H. Impact of predictors in trained Random Forest model 

3.5 Reinforce Learning 

Purpose: In this study, we have already built up a correlation between crime data and 

segmented street view. Reinforcement learning was selected due to its effectiveness to 

learn optimal behaviors with a clear reward criteria and multiple trials, which makes 

automated street view improvement possible. 

 

Model selection: In this study, we selected the Soft Actor-Critic model as our training 

model. The SAC model contains two main components: (Masadeh, Wang and Kamal, 

2000) 

Actor: Actor generate the actions and received evaluation result as improvement fac-

tors 

Critic: Critic values the actor strategy and give it back to actors. 

Besides, soft refers to soft Bellman backup which encourage the model to maximizing 

the reward while also maximizing the entropy. Specifically, SAC model is capable of 

handling continuous action spaces and balancing multiple optimization objective, mak-

ing it particularly well-suited for our dataset. 

 

Reward mechanism: Three reward rules were established for the reinforcement learn-

ing process: 

⚫ Score improvement reward: The model calculates the score_improvement 

based on the difference between (i+1) state and i state from regression model.  
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score_improvement = 𝑆𝑖+1- 𝑆𝑖 

 

A sigmoid function is applied to smooth the reward.  

 

σ(x) = 
1

𝑒−𝑥+1
 

 

then reward: 

 

σ(score_improvement) = 
1

𝑒
−(𝑆𝑖+1− 𝑆𝑖)+1

 

 

If the score_improvement>= 0, model will gain reward, otherwise, the model 

incurs penalty(see Fig.3I) 

 

Fig. 3I. Diagram of  score improvement reward 

⚫ Color ratio reward: color ratio reward is divided into two parts:  

◼ Positive impact color: The model identifies colors which has higher cor-

relation with crime rate with higher weights. The reward will be given to 

those color which has a positive impact on the crime rate. (see Fig.3J) 

 

reward = 𝑊𝑒𝑖𝑔ℎ𝑡𝑐𝑜𝑙𝑜𝑟_𝑖* k 

 

Fig. 3J. Diagram of color ratio reward 
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⚫ Penalty for Reduced Colors: The model penalizes the reduction of colors as-

sociated with the reduced percentage. The greater the proportion of colors is 

reduced, the larger the penalty incurred. (see Fig.3K) 

 

greater the proportion loss: reward = −𝑒𝑟𝑎𝑡𝑖𝑜∗5 

  

 

Fig. 3K. Diagram of color ratio reward-reduction  

⚫ Trend reward: The model employs a five-step historical window linear re-

gression to calculate trends in crime rates. (see Fig.3L) 

 

linear regression model can be expressed as: 

 

�̈�=β0+β1y1+β2y2+β3y3+β4y4+β5y5 

 

Tanh function is used for reward bounding, ensuring that the rewards remain 

within [-1,1]. 

 

reward=tanh(slope) 
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Fig. 3L. Diagram of trend reward 

Movement mechanism: There are two main movement in the action space-dilation 

and erosion which occur simultaneously. (see Fig.3M) When the white color dilate, the 

purple erode. A protected area is set for the color with overall percentage less than 5% 

which will not be influenced by the dilation movement.  

 

Fig. 3M. An example of dilation, erosion and protected area.  

Termination: The model will still calculate the predicted crime score in five steps. If 

the max mines min is less than 0.01, the training will come to an end. 
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4 Results 

4.1 Regression result 

To get the predicted crime rate values from Random Forest and XGBoost with the test-

ing dataset, an inverse transformation of the natural logarithm is applied to the predicted 

log_crime_rate data from both models: 

After obtaining predictions, three factors are used for the dashboard visualization in the 

London Lower Super Output Areas (LSOA) map: 

 

Mean of crime rate by area: The mean value of all crime rate entries within LSOA 

Maximum crime rate by area: The maximum crime rate entry by LSOA 

Sum of crime counts by area: The sum of all crime events (predicted: crime rate / 100 

* street segment length, for all crime rate entries) by LSOA 

 

A comparison chart is plotted for each factor to validate the predictions (Fig.4A). 

 

 

Fig.4A. Comparison of Random Forest and XGBoost predictions 

Conclusion of model performance 

Random Forest: 

Performance: The Random Forest model demonstrated reliable performance, particu-

larly for capturing mid-range crime rates. This is evident in the magenta plots, where 

the predictions align well with observed values for mean and maximum crime rates. 
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Interpretability: Random Forest offers an advantage in feature importance analysis, al-

lowing for straightforward identification of key predictors influencing crime rates. 

 

Application: The model was chosen for scenarios requiring balanced performance and 

greater interpretability, such as generating insights from the predictors. 

 

XGBoost: 

Performance: XGBoost consistently outperformed Random Forest in predictive accu-

racy, especially for extreme values (e.g., the highest crime rates and counts). The purple 

plots reveal closer alignment with observed values, particularly for the sum of crime 

counts. 

 

Scalability and Efficiency: XGBoost’s efficiency in handling large datasets and robust 

optimization capabilities make it the preferred choice for high-complexity tasks. 

 

Application: This model was selected for tasks requiring superior precision, particularly 

for identifying areas with higher crime concentrations. 

4.2 Reinforcement learning  

Through Reinforcement Learning, we successfully mitigated the crime rate prediction 

using the original photograph. After 500 iterations, the predicted crime rate was signif-

icantly reduced from 2.8798 to 2.6840, representing a notable improvement in our pre-

dictive model. (see Fig.4B)The accompanying line charts (see Fig.4C) illustrate the dy-

namic changes in reward and predicted score throughout the optimization process.   

 

The reward line chart and predicted score line chart provide a comprehensive visuali-

zation of the model's learning process. These graphs demonstrate the progressive re-

finement of our approach, highlighting the effectiveness of the reinforcement learning 

algorithm in systematically reducing crime rate predictions. 
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Fig. 4B. The procedure of the reinforcement learning.  

 

Fig. 4C. The line chart of reward and predicted scoreS 
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4.3 Interaction design  

Our Interactive platform enables designers to upload street view image for crime anal-

ysis, utilizing semantic segmentation techniques to generate pixel-level annota-tions, 

which serve as input for a machine learning pipeline that predicts crime risk probabili-

ties and supports generative urban design using stable diffusion models with segmen-

tation masks as control net. (see Fig.4D, Fig.4E) 

 

Fig.4D. The interactive platform for designer. 
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Fig.4E. The workflow chart of the interactive platform. 

5 Conclusion 

Throughout the study, we successfully established a correlation between crime data in 

London and Street View Imagery in London, quantifying their intricate relation-ship. 

By developing a regression model, we constructed a reinforcement learning framework 

designed to automatically enhance panoramic street view in a two-dimensional scope. 

This innovative approach provides a strong reference tools for urban renewal process. 

In the end, an interactive platform was set up for urban de-signer to test the optimal 

design solution in the initial design phase. 

5.1 Strength 

• Crime visualization 

Successful reproduction on visuals for crime case distribution 

• toolkit 

Serves as a workflow prototype for urban-scale crime analysis and prediction on 

existing cities; Could be expanded to optimize imaginary city scenes (e.g. map de-

velopment in gaming) 

• Innovative reward and movement mechanism in RL 

Using reduction penalty and protected area to maintained the detail information in 

the RL process 

• Online Platform:  
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Handy 2D design tool for planners, architects, policy makers and general public 

without considering learning curves; Practice for participatory planning 

5.2 Weakness 

Despite our contribution, several problems remain that need to be solved in the future 

study: 

• Database Limitations 

Despite our initial dataset construction, the database's scale and diversity remain 

insufficient.  

• SVI Collection Methodology 

The current Semantic View Imagery (SVI) collection method requires substantial 

enhancement，need to consider the length of the street 

• Semantic Segmentation Model Precision 

Existing semantic segmentation models lack the accuracy required for detailed 

building information extraction.  

• Crime Rate Regression Accuracy 

Overall low R-squared (<0.5) due to the impact of social-economic factors on crime 

occurance 

• Reinforcement Learning Model Effectiveness 

The application of reinforcement learning in our research necessitates further opti-

mization in more complex reward mechanism and introduce more advanced actor-

critic strategy. 
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